推广 热搜: 电机  PLC  变频器  服务机器人  培训  变送器  危化品安全,爆炸  西门子PLC  触摸屏  阀门 

工业以太网介绍及与普通以太网区别

   日期:2021-11-07     来源:工控之家网    作者:工控之家    浏览:98    评论:0    
核心提示:现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高,速度低和支持应用有限等缺陷,再加上总线通信协议的多样性,使得不同总线产品不能互相互连,互用和互操作等,因而现场总线工业网络的进一步发

  现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高,速度低和支持应用有限等缺陷,再加上总线通信协议的多样性,使得不同总线产品不能互相互连,互用和互操作等,因而现场总线工业网络的进一步发展受到了极大的限制。随着以太网技术的发展,特别是高速以太网的出现使得以太网能够克服了自己本身的缺陷,进入工业领域成为工业以太网,因而使得人们可以用以太网设备去代替昂贵的工业网络设备。

  1.以太网的主要缺陷

  在讲以太网的主要缺陷前,有必要先了解一下以太网的通信机制。以太网是指遵循IEEE802.3标准,可以在光缆和双绞线上传输的网络。它最早出现在1972年,由XeroxPARC所创建。当前以太网采用星型和总线型结构,传输速率为10Mb/s,100Mb/s,1000Mb/s或更高。以太网产生延迟的主要原因是冲突,其原因是它利用了CSMA/CD技术。在传统的共享网络中,由于以太网中所以的站点,采用相同的物理介质相连,这就意味着2台设备同时发出信号时,就会出现信号见的互相冲突。为了解决这个问题,以太网规定,在一个站点访问介质前,必须先监听网络上有没有其他站点在同时使用该介质。如果有则必须等待,此时就发生了冲突。为了减少冲突发生的几率,以太网常采用1-持续CSMA,非持续CSMA,P-持续CSMA的算法2。由于以太网是以办公自动化为目标设计的,并不完全符合工业环境和标准的要求,将传统的以太网用于工业领域还存在着明显的缺陷。但其成本比工业网络低,技术透明度高,特别是它遵循IEEE802.3协议为各现场总线厂商大开了方便之门,但是,要使以太网符合工艺上的要求,还必须克服以下缺陷:

  确定性

  由于以太网的MAC层协议是CSMA/CD,该协议使得在网络上存在冲突,特别是在网络负荷过大时,更加明显。对于一个工业网络,如果存在着大量的冲突,就必须得多次重发数据,使得网间通信的不确定性大大增加。在工业控制网络中这种从一处到另一处的不确定性,必然会带来系统控制性能的降低。

  实时性

  在工业控制系统中,实时可定义为系统对某事件的反应时间的可测性。也就是说,在一个事件发生后,系统必须在一个可以准确预见的时间范围内做出反映。然而,工业上对数据的传递的实时性要求十分严格,往往数据的更新是在数十ms内完成的。而同样由于以太网存在的CSMA/CD机制,当发生冲突的时候,就得重发数据,最多可以尝试16次之多。很明显这种解决冲突的机制是以付出时间为代价的。而且一但出现掉线,那怕是仅仅几秒种的时间,就有可能造成整个生产的停止甚至是设备,人身安全事故。

  可靠性

  由于以太网在设计之初,并不是从工业网应用出发的。当它应用到工业现场,面对恶劣的工况,严重的线间干扰等,这些都必然会引起其可靠性降低。在生产环境中工业网络必须具备较好的可靠性,可恢复性,以及可维护性。即保证一个网络系统中任何组件发生故障时,不会导致应用程序,操作系统,甚至网络系统的崩溃和瘫痪。

  2.以太网工业应用解决机制

  针对以太网存在的三大缺陷和工业领域对工业网络的特殊要求,目前已采用多种方法来改善以太网的性能和品质,以满足工业领域的要求。下面介绍几种解决机制:

  交换技术

  为了改善以太网负载较重时的网络拥塞问题,可以使用以太网交换机(switch)。它采用将共享的局域网进行有效的冲突域划分技术。各个冲突域之间用交换机连接,以减少CSMA/CD机制带来的冲突问题和错误传输。这样可以尽量避免冲突的发生,提高系统的确定性,但该方法成本较高,在分配和缓冲过程中存在一定的延时。

  高速以太网

  我们知道当网络中的负载越大的时候,发生冲突的慨率也就越大。有资料显示当一个网络的负菏低于36%时,基本上不会发生冲突,在负荷为10%以下时,10M以太网冲突机率为每五年一次。100M以太网冲突机率为每15年一次。但超过36%后随着负荷的增加发生冲突的慨率是以几何级数的速度增加的。显然提高以太网的通信速度,就可以有效降低网络的负荷。幸运的是现在以太网已经出现通信速率达100M/S,1G/S的高速以太网,在加上细致全面的设计及对系统中的网络结点的数量和通信流量进行控制,完全可以采用以太网作为工业网络。

  IEEE1588对时机制

  IEEE1588定义了一个在测量和控制网络中,与网络交流、本地计算和分配对象有关的精确同步时钟的协议(PTP)。此协议并不是排外的,但是特别适合于基于以太网的技术,精度可达微秒范围。它使用时间印章来同步本地时间的机制。即使在网络通信时同步控制信号产生一定的波动时,它所达到的精度仍可满足要求。这使得它尤其适用于基于以太网的系统。通过采用这种技术,以太网TCP/IP协议不需要大的改动就可以运行于高精度的网络控制系统之中。在区域总线中它所达到的精度远远超过了现有各种系统。此外,在企业的各层次中使用基于以太网TCP/IP协议的网络技术有着巨大的优势。

  一个包括IEEE1588对时机制的简单系统至少包括一个主时钟和多个从属时钟。如果同时存在多个潜在的主时钟,那么活动的主时钟将根据最优化的主时钟算法决定。所有的时钟不断地与主时钟比较时钟属性,如果新时钟加入系统或现存的主时钟与网络断开,则其他时钟会重新决定主时钟。如果多个PTP子系统需要互联,则必须由边界时钟来实现。边界时钟的某个端口会作为从属端口与子系统相联,并且为整个系统提供时钟标准。因此这个子系统的主时钟是整个系统的原主时钟。边界时钟的其他端口会作为主端口,通过边界时钟的这些端口将同步信息传送到子系统。边界时钟的端口对子系统来说是普通时钟。

  IEEE1588所定义的精确网络同步协议实现了网络中的高度同步,使得在分配控制工作时无需再进行专门的同步通信,从而达到了通信时间模式与应用程序执行时间模式分开的效果。由于高精度的同步工作,使以太网技术所固有的数据传输时间波动降低到可以接受的,不影响控制精度的范围。IEEE1588的一大优点是其标准非常具有代表性,并且是开放式的。由于它的开放性,现在已经有许多控制系统的供应商将该标准应用到他们的产品当中了。而且不同设备的生产商都遵循同样的标准,这样他们的产品之间也可以保证很好的同步性。

  3.工业以太网的前景和展望

  工业以太网以其特有的低成本,高实效,高扩展性及高智能的魅力,吸引着越来越多的制造业的厂商。一方面如此众多的厂商研制和开发工业以太网技术,如果不加以统一分规范,象现场总线的情况一样,标准众多,兼容性差,继而影响到工业以太网的发展。正是如此,国际社会已经开始着手制定一个工业以太网标准。在2004.5北京召开的国际工业以太网系列标准起草工作组(IEC/SC65C/WGs)第三次会议上,我们已经能够看到一个初具雏行的工业以太网国际标准,该系列标准将于2005.8定稿,经过2006.2和2006.12二次意见征求后,于2007年下半年正式发布。使得该系列标准从IS标准成为IEC标准6。另一方面,以太网和通信技术的突飞猛进也促使工业以太网技术进一步发展。现在工业以太网技术已经开始向实时工业以太网和无线工业以太网的方向发展。特别是奥地利贝加莱(B&R)已经开发出具有真正意义上的实时以太网(EthernentPowerlink),而不久的将来,面向未来工业网络的新一代工业以太网组件也将出现。由于以太网有“一网到底”的美誉,即它可以一直延伸到企业现场设备控制层,随着工业以太网技术的发展将会取代现在的基于现场总线的工业网络,成为工业网络中的主流技术。

 

 

 

 

 
打赏
 
更多>同类环保知识
0相关评论

推荐图文
推荐环保知识
点击排行
网站首页  |  免责声明  |  联系我们  |  关于我们  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  违规举报  |  鲁ICP备12015736号-1
Powered By DESTOON