一、系统组成与设计
(一)系统组成
为了实时模拟海况的风浪、水流、浪程和浪高等,本造波系统有如下分系统组成:
1.造波分系统:水池配有三套双推板大功率的造波机和小功率的造波机,大、小造波机不同的组合能产生纵向传播的长峰波,最大波高可达0.3m,由计算机进行程序控制,可以产生模型试验所需要的规则波或不规则波。
2.造流系统:水池配有一套高压喷水造流系统,在池墙两侧均匀密布喷水管,水泵从粗管吸水加压后从密布的喷水管中喷出,在水池中造成均匀的水流。该系统能产生纵向流和横向流,最大流速为0.1m/s。此外,还配置了局部造流系统,以适应高速水流以及不同流向试验的需要。
3.造风系统:配置一套可移动式鼓风机造风系统。最大风速可达5m/s,通过计算机控制系统可进行风谱的模拟。
4.拖车系统:在拖曳试验时可以进行迎浪、顺浪和横浪的拖曳试验,也可对x、y方向调节进行斜浪的拖曳试验。
5.水池过滤系统:水池配有机械过滤系统。
6.消波系统:在造波机对岸设有一定倾斜度的格栅式消波滩,借以吸收波能防止产生反射波。
(二)系统设计
为实现上述功能,系统采用分层、分单元的概念,实现真正的分布式控制。其中,造波、造流以及造风分系统分别由两台PLC控制,海况的波浪有大海浪、小海浪、纹波海浪,为了真实模拟海况的特性,高头较大的海浪由AnSH PLC控制,小海浪、纹波海浪由FX2NPLC控制。造流分系统与之类似。只有这样,才能模拟海况中的两个大浪潮中含有许多的小高头的浪潮。浪潮产生的过程为:由PLC的模拟输出功能模块输出0~10V的控制信号控制FR-E540型变频器的输出频率,变频器实时控制三相异步电机的转速,电机带动造波器的浆液片打击水面,电机的转速不同,造成两个波头之间的波程和波峰的不同,这样,三相异步电机不同的转速与不同的波头、波程、波峰相对应,因此,两台三相异步电机不同的转速组合便可实时再现模拟不同的海况。造流系统同样由AnSH PLC和FX2N PLC组合控制各自的动力水泵,形成不同的水流能量。造风系统由AnSH PLC控制大功率的风机实现。
为了提高可靠性,本控制系统中还设计了手动备用调速系统,以保证在计算机故障时不影响造波。当计算机故障时,切换装置不需人工干预,自行切换到手动备用调速系统,操作人员可以通过电位器调节变频器转速来维持正常的造波过程。三个由AnSH PLC、FX2N PLC以及FR-E540变频器和三相异步电机组成的三个现地控制单元和由PC组成的服务器、人机交互服务器架构的系统配置见图1所示。AnSH PLC、FX2N PLC配置图见图2、图3所示。
1.AnSH PLC特性及配置
A1SJHCPU是AnSH系列中最经济的CPU组件。A1SJHCPU的独特之处在于它的CPU、电源和基板集为一体,从而显著地降低了制造成本。AnSH采用了三菱专为顺序控制和数学运算而开发的“三菱顺控处理器芯片”(MSP)。AnSH不但速度比AnS快,而且增加了CC-Link的专用指令,原先的指令仍然得到保留(包括PID运算,浮点运算和三角函数等)。同时内置的性能诸如锂电池、后备RAM、用户存储器、实时时钟和一个灵活的通信口,使AnS系列能适应极广泛的应用场合。其特殊功能组件的完整,使AnSH可完美地适用于过程控制、定位控制和其他各种类型的控制。与同类产品相比,其性价比较高。其中:
A1SH42数字输入/输出模块:主要控制一些控制继电器、接触器的开闭状态、与继电器配合控制电机和变频器的电源的开闭状态。
A1SJ61BT11 CC-Link现场总线通信适配器:主要用于与系统服务器中的CC-Link主控模块通信,实时传递AnSH PLC监测各量的状态与参数、同时接收服务器传来的控制指令。
A1S66ADA模拟输入/输出模块:实时监测水池的水压变化趋势(反应了海况的级别),给FR-E540变频器提供模拟控制量,使变频器的输出频率变化,达到控制三相异步电机转速的目的,从而控制、模拟海况的风浪和浪高、浪程。
A1SD62D高速计数模块:实时监测三相异步电机的转速,以便A1S66ADA模块对电机的转速进行PID调节。
2.FX2N PLC特性与配置
FX2N系列是PLC FX家族中最先进的系列,它最大范围地包容了标准特点、程序执行更快、全面补充了通信功能、适合世界各国不同的电源以及满足单个需要的大量特殊功能模块,可以为工厂自动化应用提供最大的灵活性和控制能力。同时它拥有无以匹及的速度、高级的功能、逻辑选件以及定位控制等特点,FX2N是从16到256路输入/输出的多种应用的选择方案。其灵活的配置、高速运算、突出的寄存器容量、丰富的元件资源、尤其适合小点数的过程控制。其中:
FX2N-64MT-D主控模块:其数字输入/输出模块控制一些控制继电器、接触器的开闭状态、与继电器配合控制电机和变频器的电源的开闭状态。
FX2N-32CCL CC-Link现场总线通信适配器:主要用于与系统服务器中的CC-Link主控模块通信,实时传递FX2N-64MT监测各量的状态与参数、同时接收服务器传来的控制指令。
FX2N-4AD模拟输入模块:实时监测水池的水压变化趋势(反应了海况的级别);
FX2N-2DA模拟输出模块:给FR-E540变频器提供模拟控制量,使变频器的输出频率变化,达到控制三相异步电机转速的目的,从而控制、模拟海况的风浪和浪高、浪程。
FX2N-1HC高速计数模块:实时监测三相异步电机的转速,以便FX2N-2DA模块对电机的转速进行PID调节。
3.服务器配置
CC-Link为主从模式,因此在中控室的主控服务器内必须插放一块主模式的CC-Link通信适配卡:A80BD-J61BT11。为提高其控制的实时性,通信速率选用了2.5Mb/s,操作系统选用Windows NT4.0+SP4。系统的编程开发环境为Visual C++ Ver6.0。并安装有SQL Server V7.0,用于人机交互、CC-Link网络组态、实时数据库访问、历史数据回放、控制命令的传递和下放等任务、仿真三维图形的显示等。
(三)CC-Link现场总线
CC-Link是Control & Communication Link(控制与通信链路系统)的简称,是一种开放式现场总线,以设备层为主的网络,其数据容量大,通信速度多级可选择,而且它是一个复合的、开放的、适应性强的网络系统,能够适应于较高的管理层网络到较低的传感器层网络的不同范围。可实现从CC-Link到AS-i总线的联接。CC-Link具有高速的数据传输速度,最高可达10Mb/s。CC-Link的底层通信协议遵循RS-485,一般情况下,CC-Link主要采用广播一轮询的方式进行通信,CC-Link也支持主站与本地站、智能设备站之间的瞬间通信。
CC-Link具有性能卓越、应用广泛、使用简单、节省成本等突出优点。
(四)系统可靠性设计
PLC输出模块内的小型继电器的触点很小,断弧能力很差,不能直接用于厂级AC220V~380V电路中,必须用PLC驱动外部继电器,用外部继电器的触点驱动AC380v的负载。同时较多的AC220V~380V电磁阀内部有与其线圈串联的限位开关常闭触点,电磁阀线圈通电,阀芯动作后,是用阀内部的触点来断开电路的。在这种情况下,要选用触点较小的小型继电器来转接PLC的输出信号。本系统中用到了大功率晶闸管装置,PLC应远离强干扰源。PLC不能与高压电器安装在同一个开关柜内,在柜内PLC应远离动力线(两者之间的距离应大于200mm)。与PLC装在同一个开关柜内的电感性元件,如继电器、接触器的线圈,应并联RC消弧电路。PLC的I/O线与大功率线应分开走线,如必须要在同一线槽中布线,信号线应使用屏蔽电缆。交流线与直流线应分别使用不同的电缆,开关量、模拟量I/O线应分开敷设,后者应采用屏蔽线。不同类型的线应分别装入不同的电缆管或电缆槽中,并使其有尽可能大的空间距离。
另外,由于本系统CC-Link要完成所有数据通信,因此对通信电缆要求可靠性高,应选用CC-Link推广中心推荐并提供的专用电缆。
二、系统特性和软件设计
(一)系统特性
在本系统中,可以进行多种船舶半实物仿真试验和海洋能量的开发试验:新型海洋工程结构物的开发研究、船舶部件受力的分析和模型试验技术;可以进行波能发电装置的开发研究;海浪、海流、浪流交互作用下波态的模拟及其分析处理技术,海洋环境数值预报的模拟验证,海洋浮标、海洋水文仪器的设计、校验、标定;各类船舶的设计、结构强度及流体动力性能的研究。
(二)系统软件设计
系统仿真控制软件是本系统设计的关键核心所在,同时也是难点。包括上位机人机交互可视化软件及PLC控制软件两大块,人机交互可视化软件主要由人机界面程序模块、数字信号处理程序模块、数据库程序模块等组成,均采用Visual C++编程,在控制过程中,主程序可随时通过DAO利用SQL查询语句读写数据库中的相关数据。在仿真试验结束之后,可以进行工艺阐述数据统计操作,可以任意选择统计开始和结束时间,计算机自动对该时间段的所有测量数据进行分类统计。并可以用三维动画形式直观地显示出来,相关数据可以进行备份、删除、导出、打印报表等操作,以利于人机交互操作。
在仿真服务器上,由于要进行大量的数据分析、图像处理、人机交互,因此选用了Windows NT作为操作系统,完成数据的分析、仿真通信、海况模拟拟合以及仿真评估。系统软件的整体结构见图4所示。
三、应用体会
在本系统中,系统硬件选型是关键,如何选用性价比高、性能可靠的硬件平台应该是本系统仿真平台的设计关键之一,系统的可靠性设计也是本设计的重点。
与其他产品相比,三菱PLC指令简洁,给用户编程、维护都带来极大方便,降低了生产成本,可较大缩短开发周期。CC-Link现场总线传输速率较高、数据传输可靠性好,保证了本系统大量仿真数据的可靠传输,使得系统的实时性、可靠性得到了保证。同时,CC-Link的应用大量减少现场布线,使得系统的可维护性得到了提高。系统采用真正的分布式概念,使得仿真平台相互之间的相关性减少,便于系统设计、分析和应用。系统有现地手动和远程计算机自动控制两种方式,增加了系统的灵活性。