人类在生产实践的过程中,面临自身能力的局限性,因而发明和创造了许多智能机器,来辅助或代替人类完成任务。智能机器能模拟人类的功能,感知外部世界并有效地解决人所不能解决的问题。人类感知外部世界主要是通过视觉、触觉、听觉和嗅觉等感觉器官,其中约80%的信息是由视觉获取的。因此,对智能机器来说,赋予机器以人类视觉功能是极其重要的。
在现代工业自动化生产中,涉及到各种各样的检查、测量和零件识别应用,例如汽车零配件尺寸检查和自动装配的完整性检查,电子装配线的元件自动定位,饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等。这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。通常这种带有高度重复性和智能性的工作只能靠人工检测来完成,我们经常在一些工厂的现代化流水线后面看到数以百计甚至逾千的检测工人来执行这道工序,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100%的检验合格率(即“零缺陷”),而当今企业之间的竞争,已经不允许哪怕是0.1%的缺陷存在。有些时候,如微小尺寸的精确快速测量,形状匹配,颜色辨识等,用人眼根本无法连续稳定地进行,其它物理量传感器也难有用武之地。这时,人们开始考虑把计算机的快速性、可靠性、结果的可重复性,与人类视觉的高度智能化和抽象能力相结合,由此逐渐形成了一门新学科——机器视觉。
机器机器视觉是研究用计算机来模拟生物宏观视觉功能的科学和技术。通俗地说,就是用机器代替人眼来做测量和判断。首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等;最后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。机器视觉的特点是自动化、客观、非接触和高精度,与一般意义上的图像处理系统相比,机器视觉强调的是精度和速度,以及工业现场环境下的可靠性。
机器视觉是一个相当新且发展十分迅速的研究领域。人们从20世纪50年代开始研究二维图像的统计模式识别,60年代Roberts开始进行三维机器视觉的研究,70年代中,MIT人工智能实验室正式开设“机器视觉”课程,80年代开始,开始了全球性的研究热潮,机器视觉获得了蓬勃发展,新概念、新理论不断涌现;现在,机器视觉仍然是一个非常活跃的研究领域,与之相关的学科涉及:图像处理、计算机图形学、模式识别、人工智能、人工神经元网络等。
2. 机器视觉的系统构成和分类
典型典型的视觉系统一般包括如下部分:光源,镜头,CCD照相机,图像处理单元(或图像捕获卡),图像处理软件,监视器,通讯/输入输出单元等。视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果,如尺寸数据。上位机如PC和PLC实时获得检测结果后,指挥运动系统或I/O系统执行相应的控制动作,如定位和分选。
从视从视觉系统的运行环境分类,可分为PC-BASED系统和PLC-BASED系统。基于PC的系统利用了其开放性,高度的编程灵活性和良好的Windows界面,同时系统总体成本较低。系统内含高性能图像捕获卡,一般可接多个镜头,配套软件方面,从低到高有几个层次,如Windows95/98/NT环境下C/C++编程用DLL,可视化控件ActiveX提供VB和VC++下的图形化编程环境, 甚至Windows下的面向对象的机器视觉组态软件,用户可用它快速开发复杂高级的应用。在基于PLC的系统中,视觉的作用更像一个智能化的传感器,图像处理单元独立于系统,通过串行总线和I/O与PLC交换数据。系统硬件一般利用高速专用ASIC或嵌入式计算机进行图像处理,系统软件保存在图像处理器中,通过类似于游戏键盘的简单装置对显示在监视器中的菜单进行配置,或在PC上开发软件然后下载。基于PLC的系统体现了可靠性高、集成化,小型化、高速化、低成本的特点。
3. 机器视觉系统的应用
目前目前,国际上视觉系统的应用方兴未艾,而在中国,工业视觉系统尚处于概念导入期,各行业的领先企业在解决了生产自动化的问题以后,已开始将目光转向测量自动化方面。
机器机器视觉极适用于大批量生产过程中的测量、检查和辨识,如:零件装配完整性,装配尺寸精度,零件加工精度,位置/角度测量,零件识别,特性/字符识别等。其最大的应用行业为:汽车,制药,电子与电气,制造,包装/食品/饮料,医学。如对汽车仪表盘加工精度的检查,高速贴片机上对电子元件的快速定位,对管脚数目的检查,对IC表面印字符的辨识,胶囊生产中对胶囊壁厚和外观缺陷的检查,轴承生产中对滚珠数量和破损情况的检查,食品包装上面对生产日期的辨识,对标签贴放位置的检查等等。下面给出几个例子:
生产线、装配线质量检测:
检查印刷是否正确
外形及尺寸检查
位置检测
表面检测
速度:动态或静止目标检测,
检测速度(吞吐量)可达: 10 物件/秒
装瓶过程中最严格的质检员:
瓶体分类
标签检查
缺损识别
灌瓶液位测量
支持动态检测,吞吐量可达:25 物件/秒
零部件测量:
长度测量:精度可达1/1000 mm
角度测量
面积测量
公制单位的结果输出
支持动态或静态检测,吞吐量可达:25 物件/秒
完整性检测: -确保标签与实际物品相符
标签印刷是否正确
外形轮廓检查
表面检测
代码识别
可使用频闪或连续光源
支持动态或静态检测吞吐量:10 物件/秒
检测牙膏管口边缘毛刺:
对物件进行旋转位置识别
检测管口是否有毛刺或其他障碍物
通过异步触发器对图象进行整体评估
颜料盒生产时的粘贴物监控:
解决方案:安放颜料块前,监控颜料盒每一格中注入的胶水量,避免注入太多或太少
检验传动轴是否正确安装,并且编码一致:
解决方案:自动检测编码存在与否,以及封口和卡子的位置
结论
应用机器视觉系统能够大幅降低检验成本,提高产品质量,加快生产速度和效率。作为高精度、非接触的测量方案,视觉系统涉及到光学和图像处理算法,本身就是高度专业化的产品,在整个测量控制系统中,往往要与运动控制系统配合完成位置矫正和进给控制;另外,生产线上对多工序进行同步连续检测时,必须使视觉系统具备分布式联网能力。机器视觉与运动控制,网络通讯等先进技术的结合正在改变工业自动化生产的面貌。目前国内已经出现了像北京四通电机公司这样的具备运动控制,机器视觉,网络通讯几方面技术背景的系统集成商,他们专业化的技术支持和服务能力使之成为原始供应商和最终用户之间的桥梁。而对包装企业来说,意识到技术发展的趋势并首先付诸实施者无疑将走在竞争的前列。