推广 热搜: 电机  PLC  变频器  服务机器人  培训  变送器  危化品安全,爆炸  西门子PLC  触摸屏  阀门 

数控机床数控系统的配置和功能选择

   日期:2013-03-23     来源:工控之家网    作者:工控之家    浏览:31    评论:0    

  数控系统是数控机床的重要组成部分,配置什麽样的数控系统及选择哪些数控功能,都是机床生产厂家和最终用户所关注的问题。
  数控统的配置 伺服控制单元的选择 数控系统的位置控制方式
  开环控制系统:采用步进电机作为驱动部件,没有位置和速度反馈器件,所以控制简单,价格低廉,但它们的负载能力小,位置控制精度较差,进给速度较低,主要用于经济型数控装置;半闭环和闭环位置控制系统:采用直流或交流伺服电机作为驱动部件,可以采用内装於电机内的脉冲编码器,旋转变压器作为位置/速度检测器件来构成半闭环位置控制系统,也可以采用直接安装在工作臺的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。
  由于螺距误差的存在,使得从半闭环系统位置检测器反馈的丝杠旋转角度变化量,还不能精确地反映进给轴的直线运动位置。但是,经过数控系统对螺距误差的补偿後,它们也能达到相当高的位置控制精度。与全闭环系统相比,它们的价格较低,安装在电机内部的位置反馈器件的密封性好,工作更加稳定可靠,几乎无需维修,所以广泛地应用于各种类型的数控机床。
  直流伺服电机的控制比较简单,价格也较低,其主要缺点是电机内部具有机械换向装置,碳刷容易磨损,维修工作量大。运行时易起火花,使电机的转速和功率的提高较为困难。
  交流伺服电机是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高,目前已在很大範围内取代了直流伺服电机。
  伺服控制单元的种类
  分离型伺服控制单元,其特点是数控系统和伺服控制单元相对独立,也就是说,它们可以与多种数控系统配用,NC系统给出的指令是与轴运动速度相关的DC电压(例如0?10V),而从机床返回的是与NC系统匹配的轴运动位置检测信号(例如编码器?感应同步器等输出信号)。伺服数据的设定和调整都在伺服控制单元侧进行(用电位器调节或通过数字方式输入)。
  串行数据传输型伺服控制单元,其特点是NC系统与伺服控制单元之间的数据传送是双向。与轴运动相关的指令数据、伺服数据和报警信号是通过相应的时钟信号线、选通信号号、发送数据线、接收数据线、报警信号线传送。从位置编码器返回NC装置的有运动轴的实际位置和状态等信息。
  网络数据传输型伺服控制单元,其特点是轴控制单元密集安装在一起,由一个公用的DC电源单元供电。NC装置通过FCP板上的网络数据处理模块的连接点SR、ST与各个轴控制单元(子站)的网络数据处理模块的SR、ST点串联,组成伺服控制环。各个轴的位置编码器与轴控制单元之间是通过二根高速通信线连接,反馈的信息有运动轴位置和相关的状态信息。
  串行数据传输型和网络数据传输型伺服控制单元的伺服参数在NC装置中用数字设定,开机初始化时装入伺服控制单元,修改和调整都十分方便。
  网络数据传输型伺服控制单元(例如大隈OSP-U10/U100系统)在相应的控制软件配合下,具有实时的调整能力,例如在Hi-G型定位加减速功能中,可以根据电机的速度和扭矩特性求出相应的函数,再以其函数控制高速定位时的加减速度,从而抑制高速定位时可能引起的振动。定位速度的提高可以缩短非切削时间,提高加工效率。又如在Hi-Cut型进给速度控制功能中,系统可以在读入零件加工程序後,自动识别数控指令要求加工的零件形状(圆虎棱边等),自动调节加工速度,使之最佳化,进而实现高速高精度加工。
  采用高速微处理器和专用数字信号处理机(DSP)的全数字化交流伺服系统出现後,硬件伺服控制变为软件伺服控制,一些现代控制理论的先进算法得到实现,进而大大地提高了伺服系统的控制性能。
  伺服控制单元是数控系统中与机械直接相关联的部件,它们的性能与机床的切削速度和位置精度关系很大,其价格也占数控系统的很大部分。相对来说,伺服部件的故障率也较高,约占电气故障的70%以上,所以选配伺服控制单元十分重要。
  伺服故障除了与伺服控制单元的可靠性有关外,还与机床的使用环境、机械状况和切削条件密切相关。例如环境温度过高,易引起器件过热而损坏;防护不严可能引起电机进水,造成短路;导轨和丝杠润滑不好或切削负荷过重会引起电机过流。机械传动机构卡死更会引起功率器件的损坏,虽然伺服控制单元本身有一定的过载保护能力,但是故障情况严重或者多次发生时,仍然会使器件损坏。有些数控系统具有主轴和进给轴的实时负载显示功能(例如大隈OSP系统的“当前位置”页面上不仅可以显示轴运动的实时位置数据,而且还同时显示各轴的实时负载百分比,用户可以利用这些信息,采取措施来防止事故的发生。
  进给伺服电机的选择
  输出扭矩是进给电机负载能力的指标。从图2可见,在连续操作状态下,输出扭矩是随转速的升高而减少的,电机的性能愈好,这种减少值就愈校为进给轴配置电机时应满足最高切削速度时的输出扭矩。虽然在快速进给时不作切削,负载较小,但也应考虑最高快速进给速度下的起动扭矩。高速时的输出扭矩下降过多也会影响进给轴的控制特性。
  主轴伺服电机的选择
  输出功率是主轴电机负载能力的指标。从图3可见主轴电机的额定功率是指在恒功率区(速度N1到N2)内运行时的输出功率,低于基本速度N1时达不到额定功率,速度愈低,输出功率就愈校为了满足主轴低速时的功率要求,一般采用齿轮箱变速,使主轴低速时的电机速度也在基本速度N1以上,此时,机械结构较为复杂,成本也会相应增加。在主轴与伺服电机直接连接的数控机床中,有两种方法来满足主轴低速时的功率要求,其一是选择基本速度较低或额定功率高一档的主轴电机,其二是采用特种的绕组切换式主轴伺服电机(例如日本大隈的YMF型主轴电机),这种电机的三相绕组在低速运行时接成星形,而在高速运行时接成三角形,从而提高了主轴电机的低速功率特性,降低主轴机械部件的成本。
  这儿要特别指出的是,虽然高速加工是提高数控机床生产效率的有效途径,但高速、高精度切削会给伺服驱动和计算机部件带来更高的要求,必然增加数控系统的成本,而高速加工的另一个重要应用领域是轻金属和薄壁零件的加工,所以,应该按机床的实际需要选择主轴和进给电机的速度.

 

 
打赏
 
更多>同类环保知识
0相关评论

推荐图文
推荐环保知识
点击排行
网站首页  |  免责声明  |  联系我们  |  关于我们  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  违规举报  |  鲁ICP备12015736号-1
Powered By DESTOON